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Resonant Frequency and Q of an Open-Ended
Rectangular Cavity

DAVID M. POZAR,

Abstract—A field analysis of the TE,,,, resonant mode in an open-
ended rectangular cavity is presented. The cavity geometry consists of
rectangular waveguide with thick H-plane bifurcations for the termina-
tions at each end. The bifurcation problem is solved by the method of
modal analysis and a resonance criterion is established. Expressions for
the cavity fields are written and used to compute stored energy, power
lost, and Q. Calculated values for resonant frequency and Q are given
and compared with experimental data.

1. INTRODUCTION

PEN-ENDED microwave cavities find application
O where free flow of fluids through the cavity is desired,
as in a refractometer. Gilmer and Thorn [1] have experi-
mentally investigated various cavities of this type, while
Wenger [2] has presented an analysis for the resonant
frequency of a circular open-ended cavity.

The rectangular open-ended cavity is shown in Fig. 1.
The rectangular waveguide size is chosen according to the
microwave band of interest so that the TE,, is the only
propagating mode. Resonance of the dominant mode takes
place between the vanes with the fields in the termination
regions consisting only of quickly decaying evanescent
modes. Practically no energy is lost through the open
terminations if they are at least a few wavelengths long.

In this paper the resonant frequency, fields, stored
energies, power lost per cycle, and Q are found for the
TE,gm m = 1,2, 3---, resonant mode of the open-ended
rectangular cavity. Section II deals with solving the H-plane
bifurcation problem which consists of determining the
complex reflection coefficient p of the dominant mode and
the coefficients of the forward and back-scattered evanescent
modes which are excited by the discontinuity. When the
bifurcating vane is of zero thickness (f = 0) an exact
solution is possible by the Wiener-Hopf method, as in
Collin [3], or by a residue calculus method, as in Mittra and
Lee [4]. Wenger [2] solves the analogous circular cylindrical
open-ended cavity by a Wiener-Hopf method. The method
of solution employed here is modal analysis, closely follow-
ing Wexler [5]. While it is an approximate method, it
provides high accuracies quickly, with the advantage of
being useful for the case where ¢ # 0.

The phase of p is used in Section III to establish a reson-
ance condition from which can be found the distance d
between the vanes that is required for a given resonant
frequency. In Section IV the total E and H fields in the
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Fig. 1. Rectangular open-ended cavity design.

cavity are found from superposition of H-plane bifurcation
solutions of each termination, along with resonance
condition information. These fields are plotted in three
dimensions (E,H versus x,z) for a clearer presentation of the
field solution, in particular the singularities of H, and H, at
the vane edges. The field expressions are used in Section V
to compute time-average stored electric and magnetic
energies and power lost per cycle in the cavity walls. From
this the unloaded cavity @ is calculated.

This method of solution is found to give accurate results
for resonant frequencies, fields, and stored energies.
However, the power loss (and hence Q) calculation is poorly
convergent for thin vanes.

II. H-PLANE BIFURCATION SOLUTION

The H-plane bifurcation geometry, shown in Fig. 2,
consists of a vane of thickness ¢ centered in the broad side
of the waveguide. A TE,, wave is assumed to be incident
from z < 0 and is considered to be the only propagating
mode. All modes in the termination region (z > 0) are
assumed to be evanescent. Due to the TE;, excitation the
fields will consist of E,, H,, and H, components. Since
neither the excitation nor the cavity geometry contain any
y variation, none of the fields will vary with y.

The modal analysis method begins by using the fact that
the normal waveguide modes form a complete set in the
guide cross section. Thus any arbitrary field can be expressed
as a linear combination of the normal modes. If a unit
amplitude incident E, field is assumed, the total E, field
can be written as (assuming exp (jot) time dependence)

Ey = Sin (%) exp (—sz) + IZI Al Sin ('II:;{) exp (ylaz)’
(odd)

forz <0 (1)
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Fig. 2. H-plane bifurcation geometry and coordinate system.

where
Ve = J W_—-—koz is the propagation constant!
ko® = wpoto;

and

Y1a is positive imaginary (propagating mode);
Y1 | > 11is positive real (evdnescent mode).

Forz> 0,0 < x < (a — 1)/2,
2In
B; sin
Z1 ! (l—t/)

with y,, = VQn/(a — 1))* — k2. For(a — 2 < x < a
replace (x/a) by (1 — x/a). E, = 0 for (a — )2 < x <
(@ + ©)/2, z > 0. A, B, are the coefficients of the back-

() exe (-ma) @

ward- and forward-scattered modes, respectively. The
magnetic fields can be found from
H, =1 9 )
Wiy 0z
H, =1 9 @
oy 0x

The condition of continuity of tangential fields (E,,H,)
at z = 0 leads to a doubly infinite set of equations for the
coefficients 4;, B,. The set is simplified and solved in the
manner given by Wexler [5], and can be shown to be
equivalenit to a moment method solution of an integral
equation description of the bifurcation problem. Truncation
of the set of equations to a finite size then allows computa-
tion of the unknown coefficients by standard Gauss-Jordan
elimination. This truncation corresponds to expanding the
kernel and aperture field of the equivalent integral equation
formulation in a finite Fourier series and, as Mittra et al. [&]
have shown, using the correct ratio of these two expansion
sizes insures satisfaction of the edge condition.

This method gives quickly converging solutions, with the
values for 4,;, B, computed with 10 modes differing by less
than 1 percent from values obtained when 40 modes are
used. ‘

Note that A, is the dominant mode reflection coefficient
p, which is of unit magnitude and, say, phase ¢.

TII. RESONANCE CONDITION

The ray diagram of Fig. 3 is used to establish a condition
for resonance. The x axis in Fig. 3 is shifted a distance of
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Fig. 3. Ray diagram and coordinate system for the rectangular
open-ended cavity.

—d[2 from that of Fig. 2 to make the cavity geometry
symmetric about z = 0. Effects of evanescent modés
excited from one of the vanes and impinging on the other
vane are assumed to be negligible. The incident TE;, wave
is assumed to have a unit amplitude and is labeled E,;.
E,, travels in the +z direction, reflects from the right-hand
termination, and is then labeled E,;, traveling in thé —z
direction. Wave E,; then reflects from the left termination
and becomes E;,, traveling again in the +z direction. If
resonance is to occur, E;, must reinforce E;;. Since a lossless
cavity is assumed, E;, = E;,, or

exp (—jBz) = exp [—j(Bz + 2Bd — 2¢)], 71, = jB
‘ ®
where ¢ is the phase of p (p = A; = exp (j¢)). Solving for
d gives
d_¢;”", n=0,1,2 ©)

Equation (6) gives the vane separation d required for
resonance at a given frequency in the TE,, mode, where
m = n + 1. Results for various modes, vane thicknesses,
and wavelengths are given in Figs. 4 and 5.

Two X-band cavities were constructed and measured. A
comparison of experimental and theoretical data is given in
Table I.

1V. FIELD EXPRESSIONS

Expressions for the complete E and H fields for the
rectangular open-ended cavity can now be written with
reference to the coordinate system of Fig. 3. The dominant
mode contribution consists of two waves, one traveling in
the positive z direction and the other in the negative di-
rection ; evanescent modes are excited at both terminations.
By superposition, the y component of the electric field for
the TE,y,, (m = » + 1) mode can be obtained. Thus for
—dl2<z<d2,0<x<a,

E, = 2 exp (j$/2) sin ( ) cos (ﬁz - n_2n)

+ Y A;sin (1—75’—6) * exp (—m fl)
=3 a 2
(odd)

“[exp (yaz) + (—1)" exp (—vi2)]- (N
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TABLE 1
COMPARISON OF MEASURED AND CALCULATED VALUES OF dfa
meas. | calc. %
MODE t/a Ae/a | "d/a d/a error
TEi101 | .208 | 1.428 ) 0.924 10,935} 1.2%
TE1os | .0347 | 1.405| 2.733 | 2.755 | 0.8%

Forz > df2,0 < x < (a — t)/2,

£, = % Bisin 2 s exp [z — dD]. ®

Forz < —df2,0 < x < (a — 1)/2,

2Inx
— X
a(l — t/a)

For (a + t)/2 < x < areplace (x/a) by (1 — x/a).

A constant phase factor of exp (—jfd/2) was dropped
from (7)-(9). As was mentioned previously, the H, and H,
fields can quickly be found from relations (3) and (4). These
expressions yield a complex function of x and z, but it is
such that the phase is constant with respect to position and
thus can be removed. To within an overall phase factor, this
allows plotting the E and H fields versus position. Figs. 6-8
show three-dimensional plots of E,, H,, and H, versus
position for the TE;,, resonant mode. The magnetic field
singularities can easily be recognized. These plots were
made using 20 modes in the modal expansion.

E, = (-1 ¥, Bsin Ptz + 4] ©)

V. ENERGIES AND Q

The average stored electric and magnetic encrgies are
found from the relations ’

w=o [[[2-E0w
4
=t [[ 850

Due to the symmetry of the cavity, only one-fourth of
the total volume need be integrated. These energies were
evaluated using expressions (7) and (8), together with (3)
and (4). This calculation, carried out elsewhere [7], is too
lengthy to repeat here.

The result of this computation gives a quickly converging
electric energy while the magnetic energy converges slightly
slower, with increasing number of modal expansion modes.
The energies agree to within 1 percent after using only 10
modés. Agreement of the electric and magnetic energies is a
convenient analysis check.

The power lost per cycle due to ohmic losses in the cavity
walls is found by the standard perturbation method, as in
Collin [6], where the lossy cavity fields are taken to be
identical to the lossless cavity fields. Thus

Py = e f f \Hol? dS

where R,, = N/ wlo/20 and o is the conductivity of cavity.
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Fig. 6. Electric field E, versus position for the TE;q; mode.
Aofa =14,tla=02,0< x < a, —3a < z < 3a.

~ Fig. 7. Magnetic field H, versus position for the TE,qo; mode.

lofa = 14,tla=02,0< x < a, -3a < z < 3a.

Fig. 8. Magnetic field H, versus position for the TE;q, mode.

dofa =14,tla=02,0 < x < a, -3a < z < 3a.
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_ Calculation of P, is also tedious, and will not be repeated
here; the details may be found in [7]. This calculation is
further complicated by the fact that the waveguide modes
are not all orthogonal on the cavity surfaces, meaning that
mode coupling is present which increases P,. Unloaded
cavity @ is found from the expression

- oW, + W,)
Q= P, .

The power loss term is not. highly convergent, and in-
creases by as much as 15 percent as the number of modes
used is increased from 10 to 40. The source of this poor
convergence was traced to terms in P, which account for
losses at the vane edge. It is felt that this problem is caused
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by H, and H, being singular® at the vane edges, making the
surface currents and hence the power loss at these locations
quite large. Of course, in the practical cavity the conductivity
is not perfect and the fields would not be singular. Also,
better convergence is obtained with thicker vanes, for which
the fields are better behaved. Results of this Q calculation
are presented in graphical form in Figs. 9 and 10. It is
estimated that the calculated Q results are better than
+10 percent accurate for t/a < 0.1 and better than + 5 per-
cent for t/a > 0.1. A useful check on the Q calculation is
possible when #/a = 1.0. In this case the cavity is no longer
open ended and is a simple closed rectangular cavity for
which the Q is easily calculated [6] and found to agree
with the results from this analysis. Note that the Q of the
rectangular open-ended cavity is lower than the Q of a
closed cavity of the same resonant frequency. The Q of the
two constructed cavities was measured and found to be
significantly lower (~60 percent) than the theoretical Q.
This difference, which is quite common, is accounted for by
the coupling hole size (0.2 in) and the surface finish, which
was not polished or even very smooth.

VI. CoNCLUSION

A field analysis of rectangular open-ended cavities has
been presented. The resonant frequency and Q have been
derived and presented in graphical form. Expressions for

! As a reviewer has pointed out, only H, is strictly singular while H,
has a step change equal to J; at the discontinuity.
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the fields inside the cavity were written and plotted in three
dimensions. Good accuracies were obtained in the resonant
frequency calculation; however, the Q calculation was not
as well behaved due to the power loss becoming large at the
vane edge. Comparisons of theoretical and experimental
results for two constructed cavities were given.

Topics for further work include improvement of the Q
calculation and quantifying the effect of a coupling hole
on the cavity frequency and Q. Variations in the cavity
design such as unsymmetrical terminations or more than
one vane in each termination region could also be in-
vestigated.
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Ferrite Planar Circuits in Microwave
Integrated Circuits

TANROKU MIYOSHI, MEMBER, IEEE, S. YAMAGUCHI, annp SHINJI GOTO

Abstract—The ferrite planar circuit to be discussed in this paper is a
general planar circuit using ferrite substrates magnetized perpendicular
to the ground conductors. The main subject of this paper is the analysis
of an arbitrarily shaped triplate ferrite planar circuit, In particular, the
circuit parameters of the equivalent multiport are determined. To
analyze ferrite planar circuits in general, two approaches are possible.
One approach is based upon a contour-integral solution of the wave
equation. In the other approach the fields in the circuit are expanded in
terms of orthonormal eigenfunctions. Examples of the application of
such analyses are described.
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1. INTRODUCTION

HE planar circuit is defined as an electrical circuit
whose thickness in one direction is much less than one
wavelength and whose dimensions in the orthogonal direc-
tions are comparable to the wavelength. The concept of the
planar circuit was proposed by Okoshi in 1969 [1]. Since
then, its analysis [2]-[5] and synthesis [6], [7] have been
investigated for many circuits using isotropic material for
the spacer.
This paper will present the general treatment of a planar
circuit using ferrite material for the spacer. In particular,
an arbitrarily shaped ferrite planar circuit is discussed. The



