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Resonant Frequency and Q of an Open-Ended
Rectangular Cavity -
DAVID M. POZAR,

Abstract—Afield analysis of the TE1O. resonant mode in an open-

ended rectangular cavity is presented. The cavity geomet]ry consists of
rectangular waveguide with thick H-plane bifurcations for the termina-

tions at each end. The bifurcation problem is solved by the method of

modal analysis andaresonance criterion is established. 13xpressions for
the cavity fields are written and used to compute stored energy, power
lost, and Q. Calculated values for resonant frequency and Q are given
and compared witk experimental data.

I. INTRODUCTION

oPEN-ENDED microwave cavities find application

where free flow of fluids through the cavity is desired,

as in a refractometer. Gilmer and Thorn [1] have experi-

mentally investigated various cavities of this type, while

Wenger [2] has presented an analysis for the resonant

frequency of a circular open-ended cavity.

The rectangular open-ended cavity is shown in Fig. 1.

The rectangular waveguide size is chosen according to the

microwave band of interest so that the TEIO is the only

propagating mode. Resonance of the dominant mode takes

place between the vanes with the fields in the termination

regions consisting only of quickly decaying evanescent

modes. Practically no energy is lost through the open

terminations if they are at least a few wavelengths long.

In this paper the resonant frequency, fields, stored

energies, power lost per cycle, and Q are found for the

TE 1om9m = 1,2,3.”., resonant mode of the open-ended

rectangular cavity. Section II deals with solving the H-plane

bifurcation problem which consists of determining the

complex reflection coefficient p of the dominant mode and

the coefficients of the forward and back-scattered evanescent

modes which are ,excited by the discontinuity. When the

bifurcating vane is of zero thickness (t = O) an exact

solution is possible by the Wiener–Hopf method, as in

Collin [3], or by a residue calculus method, as in Mittra and

Lee [4]. Wenger [2] solves the analogous circular cylindrical

open-ended cavity by a Wiener–Hopf method. The method

of solution employed here is modal analysis, closely follow-

ing Wexler [5]. While it is an approximate method, it

provides high accuracies quickly, with the advantage of

being useful for the case where t # O.

The phase of p is used in Section III to establish a reson-

ance condition from which can be found the distance d

between the vanes that is required for a given resonant

frequency. In Section IV the total ~ and ~ fields in the
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Fig. 1. Rectangular open-ended cavity design.

cavity are found from superposition of H-plane bifurcation

solutions of each termination, along with resonance

condition information. These fields are plotted in three

dimensions (E,H versus X,Z) for a clearer presentation of the

field solution, in particular the singularities of HX and Hz at

the vane edges. The field expressions are used in Section V

to compute time-average stored electric and magnetic

energies and power lost per cycle in the cavity walls, From

this the unloaded cavity Q is calculated.

This method of solution is found to give accurate results
for resonant frequencies, fields, and stored energies.

However, the power loss (and hence Q) calculation is poorly

convergent for thin vanes.

II. H-PLANE BIFURCATION SOLUTION

The H-plane bifurcation geometry, shown in Fig. 2,

consists of a vane of thickness tcentered in the broad side

of the waveguide. A TEI ~ wave is assumed to be incident

from z <0 and is considered to be the only propagating

mode. All modes in the termination region (z > O) are

assumed to be evanescent. Due to the TEI o excitation the

fields will consist of EY, HX, and Hz components. Since

neither the excitation nor the cavity geometry contain any

y variation, none of the fields will vary withy.

The modal analysis method begins by using the fact that

the normal waveguide modes form a complete set in the

guide cross section. Thus any arbitrary field can be expressed

as a linear combination of the normal modes. If a unit

amplitude incident EY field is assumed, the total EY field

can be written as (assuming exp (jot)time dependence)

() ()
E, = sin ~ exp (–YI.Z) + ~ Al sin @ exp (YkZ )>

a 1=1 a
(odd)

for z <0 (1)
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Fig. 2. H-plane bifurcation geometry and coordinate system.

where

y,= = i(lrc/a)2 - k.’ is the propagation constant;

koz = W2W0 ;

and

71. is positive imaginary (propagating mode);

yt~, 1> 1 is positive real (ewtnescent mode).

Forz>O, O<x<(a–t)/2,

EY = f B, sin
21n

()
~ exp ( – yl~z )

(1 – t/a) a
(2)

1=1

with yl~ = ~(2hr/(a – t))2 – k02. For (a – t)/2 < x < a

replace (x/a) by (1 – x/a). EY = O for (a – t)/2 < x <

(a + t)/2, z >0. Al, B, are the coefficients of the back-

ward- and forward-scattered modes, respectively. The

magnetic fields can be found from

–ja E
H.=—— ,

co,u~az
(3)

Hz.~~E (4)
COf10ax ~

The condition of continuity of tangential fields (EY,HX)

at z = O leads to a doubly infinite set of equations for the

coefficients A z, B,. The set is simplified ahd solved in the

manner given by Wexler [5], and can be shown tb be

equivalent to a moment method solution o} an integral

equation description of the bifurcation problem. Truncation

of the set of equations to a finite, size then allows computa-

tion of the unknown coefficients by standard Gauss–Jordan

elimination. This truncation corresponds to expanding the

kernel and aperture field of the equivalent integral equation

formulation in a finite Fourier series and, as Mittra et al. [8]

have shown, using the correct ratio of these two expansion

sizes insures satisfaction of the edge condition.

This method gives quickly converging solutions, with the

values for A ~, B1 computed with 10 modes differing by less

than 1 percent from values obtained when 40 modes are

used.

Note that Al is the dominant mode reflection coefficient

p, which is of unit magnitude and, say, phase ~.

III. RESONANCE CONDITION

The ray diagram of Fig. 3 is used to establish a condition

for resonance. The x axis in Fig. 3 is shifted a distance of

Fig. 3. Ray diagram and coordinate system for the rectangular
open-ended cavity.

– d/2 from that of Fig. 2 to make the cavity geometry

symmetric about z = O. Effects of evanescent modt!s

excited from one of the vanes and impinging on the other

vane are assumed to be negligible. The incident TE1 o wave

is assumed to have a unit amplitude and is labeled Etl.

Eil travels in the +Z direction, reflects from the right-hattd

termination, and is then labeled I&, traveling in the – z

direction. Wave E,l then retlects from the left termination

and becomes Ei29 traveling again in the ,+ z direction. If

resonance is to occur, Ei2 must reinforce Eil. Since a lossless

cavity is assumed, Eil = Ei29 or

exp (–jflz) = exp [ –j@z + 2/?d – 24)], yl= = j~

(5)

where 1$is the phase of p (p = A ~ = exp (j@)). Solving for

d gives

d=~+nn— , n =0,1,2”””,
B

(6)

Equation (6) gives the vane separation d required for

resonance at a given frequency in the TElo~ mode, where

m = n + 1. Results for various modes, vane thicknesses,

and wavelengths are given in Figs, 4 and 5.

Two X-band cavities were constructed and measured, A

comparison of experimental and theoretical data is given in

Table I.

IV. FIELD EXPRESSIONS

Expressions for the complete Z and R fields for the

rectangular open-ended cavity can now be written with

reference to the coordinate system of Fig, 3. The dominant

mode contribution consists of two waves, one traveling in

the positive z direction and the other in the negative di-

rection; evanescent modes are excited at both terminations.

By superposition, the y component of the electric field for

the TEIO. (W = n + 1) mode can be obtained. Thus for

–d/2<z<d/2,0<x <a,

‘y=2exp(’@’2)sin(:)c0s(~z-7)
+12“sin(%)”ex+’+)

(odd)

“ [exp (yl.z) + (– 1)” exp ( - yl.z)]. (7)
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Fig.4. Distanw between vanes forthefirst three modesofresonance
versus wavelength.
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Fig. 5. Distance between vanes for resonance in the TEIOI mode
versus vane thickness.

TABLE I
COMPARISONOFMEASUREDANDCALCULATEDVALUESor d/a

m

Forz > d/2,0 c x < (a – t)/2,

EY = ~ Bl sin 2ZZX exp[–yl~(z – d/2)], (8)
1=1 a(l – t/a)

Forz < –d/2,0<x<(a– t)/2,

~Y = (–1)” ~ Bl sin 2~zx exp [yl~(z + d/2)]. (9)
1=1 a(l – t/a)

For(a + t)/2 < x < areplace(x/a)by(l – x/a).

A constant phase factor of exp (–jj3d/2) was dropped

from (7)-(9). As was mentioned previously, the HX and Hz

fields can quickly be found from relations (3) and (4). These

expressions yield a complex function of x and z, but it is

such that the phase is constant with respect to position and

thus can be removed. To within an overall phase factor, this

allows plotting the E and ~ fields versus position. Figs. 6–8

show three-dimensional plots of EY, HX, and HZ versus

position for the TEIOI resonant mode. The magnetic field

singularities can easily be recognized. These plots were

made using 20 modes in the modal expansion.

V. ENERGIES AND Q

The average stored electric and magnetic energies are

found from the relations

Due to the symmetry of the cavity, only one-fourth of

the total volume need be integrated. These energies were

evaluated using expressions (7) and (8), together with (3)

and (4). This calculation, carried out elsewhere [7], is too

lengthy to repeat here.

The result of this computation gives a quickly converging

electric energy while the magnetic energy converges slightly

slower, with increasing number Qf modal expansion modes.

The energies agree to within 1 percent after using only 10

m~des. Agreement of the electric and magnetic energies is a

convenient analysis check.

The power lost per cycle due to ohmic losses in the cavity

yalls is found by the standard perturbation method, as in

Collin [6], where the lossy cavity fields are taken to be

identical to the Iossless cavity fields. Thus

where R~ = 4OW0/2G and rr is the conductivity of cavity.
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Fig. 6.

Fig. 7.

Electric field EY versus position for the TElol mode.
Jo/a = 1.4, t/a = 0.2,0< x < a, -3a < z < 3a.

z

!}
Magnetic field H. versus position for the TEI O~ mode.
&/tl = 1.4, tla = 0.2,0 < x < a, –3a < z < 3a.

v
Fig. 8. Magnetic field Hz versus position for the TE1O1 mode.

&/a = 1.4, t/a = 0.2,0 < x < a, –3a < z < 3a.
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Fig. 9. Unloaded cavity Q versus wavelength for the TEIO I mod
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Fig. 10. Unloaded cavity Q versus vane thickness for the TEIO ~ am
TE103 modes.

Calculation of P1 is also tedious, and will not be repeated ‘

here; the details may be found in [7]. This calculation is

further complicated by the fact that the waveguide modes

are not all orthogonal on the cavity surfaces, meaning that

mode coupling is present which increases Pz. Unloaded

cavity Q is found from the expression

Q = dwf + ‘?)
P, “

The power loss term is not highly convergent, and in-

creases by as much as 15 percent as the number of modes

used is increased from 10 to 40. The source of this poor -

convergence was traced to terms in Pl which account for

losses at the vane edge. It is felt that this problem is caused
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by H. and Hz being singulari at the vane edges, lmaking the

surface currents and hence the power loss at these locations

quite large. Of course, in the practical cavity the conductivity

is not perfect and the fields would not be singular. Also,

better convergence is obtained with thicker vanes, for which

the fields are better behaved. Results of this Q calculation

are presented in graphical form in Figs. 9 and 10. It is

estimated that the calculated Q results are better than

~ 10 percent accurate for t/a < 0.1 and better than ~ 5 per-

cent for t/a > 0.1. A useful check on the Q calculation is

possible when t/a = 1.0. In this case the cavity is no longer

open ended and is a simple closed rectangular cavity for

which the Q is easily calculated [6] and found to agree

with the results from this analysis. Note that the Q of the

rectangular open-ended cavity is lower than the Q of a

closed cavity of the same resonant frequency. The Q of the

two constructed cavities was measured and found to be

significantly lower (*60 percent) than the theoretical Q.

This difference, which is quite common, is accounted for by

the coupling hole size (0.2 in) and the surface finish, which

was not polished or even very smooth.

VI, CONCLUSION

A field analysis of rectangular open-ended cavities has

been presented. The resonant frequency and Q have been

derived and presented in graphical form. Expressions for

1As a reviewer has pointed out, only H= is strictly singular while H.
has a step change equal to J, at the discontinuity.

the fields inside the cavity were written and plotted in three

dimensions. Good accuracies were obtained in the resonant

frequency calculation; however, the Q calculation was not

as well behaved due to the power loss becoming large at the

vane edge. Comparisons of theoretical and experimental

results for two constructed cavities were given.

Topics for further work include improvement of the Q

calculation and quantifying the effect of a coupling hole

on the cavity frequency and Q. Variations in the cavity

design such as unsymmetrical terminations or more than

one vane in each termination region could also be in-

vestigated.

REFERENCES

[1] R. O. Gilmer and D. C. Thorn, “Some design criteria for open-
ended microwave cavities,” Univ. New Mexico, Albuquerque,
Tech. Rept. EE-65, June 1962.

[2] N. C. Wenger, “Resonant frequency of open-ended cylindrical
cavity,” IEEE Trans. Microwave Theory Tech., vol. MTT-15,
pp. 334-340, June 1967.

[3] R. E. Collin, Field Theory of Guided Waoes. New York: McGraw-
Hill, 1960, pp. 447-449.

[4] R. Mittra and S. Lee, Analytical Techniques in the Theory of
Guided ?Vaues. New York: Macmillan, 1971, pp. 3&45.

[5] A. Wexler, “Solution of waveguide discontinuities by modal
analysis;’ IEEE Trans. Microwave Theory Tech., vol. MTT-15,
pp. 508-517, Sept. 1967.

[6] R. E. Colliq, Foundations for Microwave Engineering. New York:
McGraw-Hall. 1966. ~D. 324-325.

[7] D. M. Pozar, “’Field ~nalysis of an open-ended rectangular micro-
wave cavity,” M.S. thesis, University of Akron, Akron, OH,
June 1976.

[8] R. Mittra, T. Itoh, and T. S. Li, “Analytical and numerical studies
of the relative convergence phenomenon arising in the solution of
art integral equation by the moment method,” IEEE Trans. Micro-
waue Theory Tech., vol. MTT-20, pp. 96-104, Feb. 1972.

Ferrite Planar Circuits in Microwave
Integrated Circuits
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Abstract—The ferrite planar circuit to be discussed in this paper is a
general planar circuit using ferrite substrates magnetized perpendicular

to the ground conductors. The main snbject of this paper is the analysis
of an arbitrarily shaped triplate ferrite planar circuit. In particular, the
circuit parameters of the equivalent multiport are determined. To

analyze ferrite planar circuits in general, two approaches are possible.
One approach is based upon a contonr-integral solution of the wave
equation. In the other approach the fields in the circuit are expanded in

terms of orthonormal eigenfunctions. Examples of the application of
such analyses are described.
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I. INTRODUCTION

T HE planar circuit is defined as an electrical circuit

whose thickness in one direction is much less than one

wavelength and whose dimensions in the orthogonal direc-

tions are comparable to the wavelength. The concept of the

planar circuit was proposed by Okoshi in 1969 [1]. Since
then, its analysis [2]–[5] and synthesis [6], [7] have been

investigated for many circuits using isotropic material for

the spacer.

This paper will present the general treatment of a planar

circuit using ferrite material for the spacer. In particular,

an arbitrarily shaped ferrite planar circuit is discussed. The


